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The linear and nonlinear optical properties of some ferroelectrics (BaTiO3, KNbO3, LiTaO3 and LiNbO3)  are studied by 
density functional theory (DFT) in the local density approximation (LDA) expressions based on first principle calculations 
without the scissor approximation. Specially, we present calculations of the frequency- dependent complex dielectric 
function )(ωε and the second harmonic generation response coefficient χ(2) (-2ω,ω,ω) over a large frequency range in 

tetragonal and rhombohedral phases. The electronic linear electrooptic susceptibility χ(2) (-ω,ω,0) is also evaluated below 
the band gap. These results are based on a series of the LDA calculation using DFT. Results for χ(2) (-ω,ω,0) are in 
agreement with experiment below band gap and those for  χ(2)(-2ω,ω,ω) are compared with experimental data where 
available.    
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1. Introduction 
 
Nowadays, nonlinear optics has developed a field of 

major study because of rapid advance in photonics [1]. 
Nonlinear optical techniques have been applied to many 
diverse disciplines such as condensed matter physics, 
medicine and chemical dynamics. The development of 
new advanced nonlinear optical materials for special 
applications is a crucial importance in technical areas such 
as optical signal processing and computing, acousto-optic 
devices and artificial neuro-network implementation. 
There are intense efforts in experimenting, fabricating and 
searching for various nonlinear optical materials  including 
ferroelectrics and related compounds. However there is 
comparatively a much smaller effort to understand the 
nonlinear optical process in this materials at the 
microscopic level. Theoretical understanding of the factor 
that control the figure of merit is extremely important in 
improving the existing electrooptic (EO) materials and in 
the search for new ones[2].    

Even though there exist a number  of  calculations for 
the electronic band structure and optical properties using 
different methods [3-10]. There is a large variation in the 
energy gaps, suggesting that the energy band gap depends 
on the method of the energy spectra calculation. We 
therefore thought it worthwhile to perform calculations 
using density functional theory (DFT) in the local density 
approximation (LDA) expressions, as implemented within 
ABINIT package[8] the following convention. Static fields 
will be labeled by Greek indices (α,β,…) while we refer to 
optical fields with Latin symbols (i,j,…). To simplify the 
notation, we will also drop labels such as ∞ for  quantities 
that do not involve the response of the ions. Using this 
convention, we can write ijε  and  αβε , respectively, for 
the optical and static dielectric tensors, respectively, and 

γijr  for the linear EO tensor that involves two optical and 
one static electric fields. 

In this paper, we describe details calculations of the 
linear and nonlinear optical properties, includes linear 
electro-optic tensor for some ABO3 ferroelectrics (A= Ba, 
K, Li, B=Ti, Ta, Nb) with oxygen octahedral structure. 
Our calculations will highlight the effect of replacing Ti 
by Nb and Nb by Ta (and also replacing Ba by Li and Li 
by K) on the optical properties in ABO3 ferroelectrics. Our 
aim in this study is to understand the origin of the 

)(2 ωχ and ijkr  in these materials as well as to study the 
trends with moving from Ti to Nb and Nb to Ta 
(Ba→Li→K). 

Our paper is organized as follows. In sec.2, we 
describe the methodology, structure and computational 
details. In sec.3, we describe the computation of the 
nonlinear optical susceptibilities and linear EO tensor. In 
sec.4, we illustrate the validity of the formalism by 
applying methodology and theory (see sec.2 and sec.3) to 
ABO3 ferroelectrics.  Some of the tensor we consider in 
this work depends on static electric fields: They include 
contributions of both the electrons and the ions. Other 
quantities imply only the response of the valence 
electrons: They are defined for the frequencies of the 
electric fields high enough to get rid of the ionic 
contributions but sufficiently low to avoid electronic 
excitations. For clarity, we adopt.   

 
2. Computational details 
 
The nonlinear optical properties of ABO3 were 

theoretically studied by means of first principles 
calculations in the framework of density functional theory 
(DFT) and based on the local density approximation 
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(LDA)[11] as implemented in the ABINIT code[8,12]. 
The self–consistent norm-conserving pseudopotentials are 
generated using Troullier-Martins scheme [13] which is 
included in the Perdew-Wang [14] scheme as 
parameterized by Ceperly and Alder [15]. For calculations, 
the wave functions were expanded in plane waves up to a 
kinetic-energy cutoff of 40 Ha (LiNbO3 and LiTaO3), 35 
Ha (tetragonal and rhombohedra KNbO3), 38 Ha 
(BaTiO3). The Brillouin zone was sampled using a 6 x 6 x 
6 the Monkhorst-Pack[16]  mesh of special k points. 
Rhombohedral position coordinates of LiNbO3 and 
LiTaO3 using both experimental value [17,18] were 
calculated to relate to the hexagonal coordinates given in 
the literature by the transformation[19]. The coordinates of 
KNbO3 [20] and BaTiO3[21] are reported in Table 1. All 
calculation of ABO3 has been used with the experimental 
lattice constants and atomic positions. The lattice constants 
and atomic positions are given in Table 1. The coordinates 

of the other atoms can easily be obtained by using the 
symmetry operations of the space groups. These 
parameters were necessary to obtain converged results in 
the nonlinear optical properties and phonons data at Γ 
point of the Brillouin zone. 

 
 
3. Linear and nonlinear optical response 
 
3.1 Linear optical response 
 
It is well known that the effect of the electric field 

vector, )(ωE , of the incoming light is to polarize 
 
 
 

 
Table 1. The lattice parameters and atomic positions in ABO3. 

                             
Phase Space            Lattice 

Group        Parameters (Å) 
Atom Position 

LiNbO3 
Ferroelectric 

(Rhombohedral) 

R3c             a = b = c = 5.4944 Li 
Nb 
O 

(0.2829, 0.2829, 0.2829) 
(0.0,       0.0,       0.0  ) 
(0.1139,0.3601,-0.2799) 

LiTaO3 
Ferroelectric 

(Rhombohedral) 

R3c          a = b = c = 5.4740 Li 
Ta 
O 

 
(0.2790, 0.2790, 0.2790) 
(0.0,       0.0,       0.0  ) 
(0.1188,0.3622, -0.2749) 

KNbO3 
Ferroelectric 
(Tetragonal) 

 

 P4mm     a = b = 3.9970 
                 c = 4.0630 

K 
Nb 

O(1) 
O(2) 

 
(0.0,     0.0,    0.023) 
(0.5,     0.5,    0. 5 ) 
(0.5,     0.5,    0.04) 
(0.5,     0.0,    0.542) 

KNbO3 
Ferroelectric 

(Rhombohedral) 

R3m           a = b = c =  4.0160 K 
Nb 

O(1) 
O(2) 

 
(0.0112,0.0112,  0.0112) 
(0.5,       0.5,        0. 5 ) 
(0.5295,0.5295,  0.0308) 
(0.5295,0.0308,  0.5295) 

BaTiO3 
Ferroelectric 
(Tetragonal) 

 

P4mm      a = b = 3.9909 
                 c = 4.0352 

Ba 
Ti 

O(1) 
O(2) 

 
(0.0,     0.0,     0.0) 
(0.5,     0.5,     0.5224 ) 
(0.5,     0.5,    -0.0244) 
(0.5,     0.0,      0.4895) 

 
 

the material. In an insulator the polarization can be 
expressed as a Taylor expansion of the  )(ωE  
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where n, m denote energy bands, 
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−=  is the Fermi occupation factor, 
and Ω is the normalization volume.  
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hω  is the energy of band n at wave vector K
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where  ],/)([)( mKPK i

nm
i
nm

rr
=ν  m is the free electron 

mass, and nmP  is the momentum matrix element. 2
ijlχ  the 

second-order nonlinear susceptibility tensor and will 
discusses in sec.4. As can be seen from Eq.2, the dielectric 
function )],(41[)( 1 ωωπχωε −+= ijij   and the  imaginary 

part of ),(ωε ij  )(2 ωε ij  is given by 

            ))((
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The real part of )(),( 1 ωεωε ij
ij , can be obtained by 

using Kramers-Kronig transformation 
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As the Kohn-Sham equations only determine the 

ground-state properties, hence the unoccupied conduction 
bands have no physical significance. If they are used as 
single-particle states in optical calculation of 
semiconductors, a band gap problem comes into existence: 
The absorption starts at a too  low energy [23]. In order to 
remove the deficiency the many-body effects must be 
included in calculations of response functions. In order to 
take into account the self-energy effects., generally used 
the scissors approximation [23]. In the calculation of the 
optical response in present work we have used the 
standard expression for )(ωε ij  (see Eq.4 and 5). 

 
3.2 Nonlinear response 
 
The general expression of the nonlinear optical 

susceptibility depends on the frequencies of the )(ωE . 
Therefore, in present context of the (2n+1) theorem 
applied within the LDA to DFT we get expression for the 
second order susceptibility[22-25]. As the sum of the three 
physically different contributions  

γβ

γββ
βββγββγβ ωω
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That includes contributions of interband and intraband 
transitions to the second order susceptibility. The first term 
in Eq.6 describes contribution of interband  transitions to 
second order susceptibility. The second term represents the 
contribution of intraband transitions to second order 
susceptibility and the third term is the modulation of 
interband terms by intrabands terms. We have used this 
expression to calculate nonlinear response functions of 
ABO3 ferroelectrics.  

 
 3.3 Principal refractive indices calculation 
 
The principal refractive indices, in , can be computed 

as a square root of the eigenvalues of the optical dielectric 
tensor. At finite temperature, T, we can write 

><+>=< ),(4),( 1 ημπδηε rijijrij uu    where <…> refers to 

the average value at a given T. Let us write ru  and η  as 

rr uuu δ+>=<  and δηηη +>=< , where ruδ  and 
δη  denote the deviations from average values (here,  ru - 
the ionic degree of freedom in r unit cell, η - the 
macroscopic strains). If we develop >< ),(1 ηχ rij u  as a 
Taylor expansion about the paraelectric structure, we can 
separate the terms depending on >< u  and ><η  only 
from those involving also ruδ  and δη . At finite 
temperature, the dielectric susceptibility can therefore be 
expressed as 

 
        >><><<+><><>=< ),,,(),(),( 111 δηδηχηχηχ rijijrij uuuu      (7) 

 
The first term describes the variations of 1

ijχ  due to 
the averaged crystal lattice distortions. It is responsible for 
the discontinuity of in at the phase transition in 
ferroelectrics such as BaTiO3.  The second term represents 
the variations of 1

ijχ  due to thermal fluctuations and to 

their correlations [2].  It determines the variations of in  in 
the paraelectric phase. This term is difficult to compute in 
practice. However, in usual ferroelectric such as BaTiO3 or 
KNbO3, the variations of in  in the paraelectric phase are 
small compared to their variation at the phase transition. 
Following ref.[22] we will neglect the second term in Eq.7 
since we are interested in the variation of in  below the 
phase transition temperature (Tc) where we expect the first 
term to dominate. The linear EO effect is related to the 
first order change of the optical dielectric tensor induced  
by a static or low frequency electric field (E). 

 
3.4 Electro-Optic tensor 
 
The optical properties of material usually depend on 

external parameters such as the temperature, electric or 
magnetic fields or mechanical constraints (stress, strain). 
Now we consider the variations of the refractive index 
induced by a static or low-frequency electric field E . At 
linear order, these variations are described by the linear 
electro-optical (EO) coefficients (Pockels effect). 

 

               k
k

ijkij Er∑=Δ
=

− 3

1

1)(ε                                 (8) 

 
where  ij)( 1−ε  is the inverse of the electronic dielectric 

tensor and ijkr  the EO tensor. Within the Born-
Oppenheimer approximation, the EO tensor can be 
expressed as the sum of the three contributions: a bare 
electronic part el

ijkr  an ionic contribution ion
ijkr  and a 

piezoelectric contribution piezo
ijkr . The electronic part is due 
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to an interaction of  kE  with the valence electrons when 
considering the ions artificially as clamped at their 
equilibrium positions. It can be computed from the 
nonlinear optical coefficients. As can be seen from Eq.6 

2
ijlχ   defines the second order change of the induced 

polarization with respect to kE . Taking the derivation of 

Eq.8  we also see that 2
ijlχ  defines the first-order change 

of the linear dielectric susceptibility, which is equal to 

ijεπ Δ)4/1( . Since the EO tensor depends on ij)( 1−Δ ε  

rather than ijεΔ , we have to transform   ijεΔ  to 

ij)( 1−Δ ε by the inverse of the zero-field electronic 
dielectric tensor [34]. 
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Using Eq.9 we obtain the following expression for the 

electronic EO tensor: 
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Eq.10 takes a simpler from when expressed in the 

principal axes of the crystal under investigation [34]: 
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where  in  coefficients are the principal refractive indices.  
The origin of ionic contribution to the EO tensor is the 

relaxation of the atomic positions due to the applied 
electric field    kE  and the variations of the  ijε   induced 
by these displacements. It can be computed from the Born 
effective charge *

,, βαkZ  and the αχ kij T∂∂ /  coefficients 
introduced in [34]. The ionic EO tensor can be computed 
as  a sum over the transverse optic phonon modes at 

0=q
r
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where mα  is the Raman susceptibility of mode m and 

kmP ,  the mode polarity 
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which is directly linked to the make oscillator strength 
 

                 βααβ mmm PPS ,, =                                 (14) 
 

For simplicity, we have expressed Eq.14  in the 
principal axes while a more general expression can be 
derived from Eq.10. 

Finally, the piezoelectric contribution is due to a 
relaxation of the unit cell shape due to the converse 
piezoelectric effect [34]. It can be computed from the 
elasto-optic coefficients μνijP  and the piezoelectric strain 

coefficients μνkd : 
 

                 μν
νμ

μν kij
piezo

ijk dPr ∑=
=

3

1,
                        (15) 

 
In the discussion of the EO effect, we have to specify 

whether we are dealing with strain-free (clamped) or 
stress-free (unclamped) mechanical boundary conditions. 
The clamped EO tensor η

ijkr  takes into account the 
electronic and ionic contributions but neglects any 
modification of the unit cell shape due to the converse 
piezoelectric effect [7]. 
 

                 ion
ijk

el
ijkijk rrr +=η                               (16) 

 
Experimentally, it can be measured for frequencies of  

kE  high enough to eliminate the relaxations of the crystal 
lattice but low enough to avoid excitations of optical 
phonon modes (usually above ~ 102 MHz). To compute the 
unclamped EO tensor σ

ijkr  we have added the piezoelectric 

contribution to η
ijkr . In the noncenterosymmetric phases of  

ABO3 the EO tensor has four independent elements r13, r33, 
r22, r15 = r42. In contrast to the dielectric tensor, the EO 
coefficients can either be positive or negative. The sign of 
these coefficients is often difficult to measure 
experimentally. Moreover, it depends on the choice of the 
Cartesian axes.  The z axes is along the direction of the 
spontaneous polarization and the y – axis lies in a mirror 
plane. The z and y –axes are both piezoelectric. Their 
positive ends are chosen in the direction that becomes 
negative under compression. The orientation of these axes 
can easily be found from pure geometrical arguments. Our 
results are reported in the Cartesian  axes where the 
piezoelectric coefficients d22 and d33 are positive. These 
coefficients, as well as their total and electronic part, are 
reported in Table 2. All EO coefficients are positive as is 
the case for the noncentro-symmetric phases [7], the 
phonon modes that have the strongest overlap with the soft 
mode of the paraelectric phase dominate the amplitude to 
the EO coefficients. Moreover, the electronic contributions 
are found to be quite small. All our investigation of EO 
coefficients of ABO3 shows a good agreement and also 
between our results and earlier investigations.  
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Table 2. EO tensors of some ABO3 crystals. 
 

Crystals Symmetry 
Class 

                   EO coefficients x 10-7  (esu) 
                     Electronic      Total          Exp.         

BaTiO3 
 
 
KNbO3 
 
 
 
 
 
 
 
 
LiNbO3 
 
 
 
 
LiTaO3 
 
 
 

4mm 
 
 
4mm 
 
 
 
3m 
 
 
 
 
3c 
 
 
 
 
3c 
 
 
 

r13                              0.358           1.653      3.06   [27] 
r33                              0.505           3.570     12.18  [27] 
 
r13                              0.288          1.279  
r33                              1.029          5.117        
 r51 = r42                 0.288          1.279   
 
r13                               0.569          3.417  
r33                               0.942          6.276        
 r51 = r42                  0.623         3.459   
 r22                               0.254         1.333 
 
r13                              0.230           1.756       2.58  [28]  
r33                               0.082          6.085       9.24  [28] 
 r51 = r42                 0.236          1.879       8.40  [28] 
r22                              0.002          0.402        1.02  [28] 
 
r13                               0.092          3.513       2.52  [29] 
r33                               0.718          5.151       0.06  [29]    
 r51 = r42                 0.091          1.105       9.15  [29]  
r22                              0.039          0.132      -6.00  [29] 
 

 
 

4. Results and discussion 
 
The calculation of nonlinear optical properties is 

much more complicated than the same procedure in the 
linear case.  The difficulties concern both the numerical 
and the physics. The k-space integration in expression (6) 
has to be performed more carefully using a generalization 
of methods [24-26]. More conduction bands have to be 
taken into account to reach the same accuracy. The fact 
that  the SHG coefficients are related to the optical 
transitions has remarkable consequences. First of all, we 
note that the equations for SHG consist of a number of 
resonant terms. In this sense the imaginary part, Imχ(2) (-
2ω,ω,ω) resembles the є2(ω) and provides a link to the 
band structure. The difference, however, is that whereas in 
є2(ω) only the absolute value of the matrix elements 
squared enters, the matrix elements entering the various 
terms in  χ(2) are more varied. They are in general complex 
and can have any sign. Thus,                Imχ(2) (-2ω,ω,ω) 
can be both positive and negative. Secondly, there appear 
both resonances when 2ω equals a interband energy and 
when ω equals an interband energy. Fig. (1-5) shows the 
2ω and single ω resonances contributions to Imχ(2) (-
2ω,ω,ω) compared to є2(ω) (Fig. 6) for a number of ABO3. 
They clearly show a greater variation from high symmetry 
to lowest symmetry than the linear optic function. In some 
sense they resemble a modulated spectrum. Third, we note 
that the  2ω resonances occur at half the frequency 
corresponding to the interband transition. Thus, the 
incoming light need not be as high in the UV to detect this 
higher lying interband transition. This is important  for 
wide band gap materials like ABO3  compounds where 

laser light sources reaching the higher interband transitions 
are not available. Nevertheless, one still  needs to be able 
to detect the corresponding 2ω signal in the UV. 
Unfortunately the intrinsic richness of  χ(2) spectra remains 
largely to be explored experimentally we are not aware of 
any attempts to measure both the real and imaginary parts 
of the these spectral functions as one standard does in 
linear optics.    Also, it is well known that nonlinear 
optical properties are so sensitive to small changes in the 
band structure than the linear optical properties. That is 
attributed to the fact that the second harmonic response  

)()2( ωχ ijk  contains 2ω resonance along with the usual ω 
resonance. Both the ω and resonances can be further 
separated into inter-band and intraband contributions. The 
structure in )()2( ωχ ijk  can be understood from the 
structures in є2(ω). Our calculations for  є2(ω) give two 
fundamental oscillator bands at ~6 and ~10 eV which 
correspond to the optical transitions from the valance 
bands to the conduction band, formed by the d orbits of the 
B (Ti,Nb,Ta) atoms and consisting of two subbonds. It is 
well known that the є2(ω) function computed from 
moments ( pr ) appear to be very sensitive to the ab initio 
parameters and seem to be particularly appropriate to test 
electronic band structure. In ABO3 perovskites the two 
peak present in experimental reflectivity data are obtained 
in theoretical curves only when the interband transition 
moments varied with respect to the energies and k

r
 wave 

vectors. In this computation on ABO3, compounds many 
parameters have been barrowed from existing 
computations have been neglected, explaining some 
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discrepancies between theory and experiments [9-10, 30-
35]. The structure 2-6 eV in )()2( ωχ ijk is associated with 
interference between a  ω and 2ω resonances, while the 
structure above 6 eV is due to mainly to ω resonance. In 
Fig. 1-5 we show the 2ω interband and intraband 
contributions for ABO3 compounds. Also given is their 
decomposition into intra- and interband contributions. 
They are arranged so as to move the Ba → K → Li,   Ti → 
Nb → Ta trends obvious. For example χ(2) obviously 
increases when going from Ba to K and Li and from Ti to 
Nb. Unfortunately, the agreement between theory and 
experiment is by no means perfect [36]. 

Note that the interband part are negative in all cases 
and in most  cases largely compensate the intraband part. 
The exceptions are the LiBO3 (B=Nb,Ta) compounds in 
both cases of which interband part is much smaller in 
magnitude than the intraband part. This quite interesting 
because unexpected.  It raises the question what features in 
the band structure of these two compounds distinguish 
them from the other compounds[37,38]. Recently, in 
ref.[39] were computed Ai  (i=1,2) and E phonon modes 
and nonlinear optical susceptibilities for LiNbO3. 
Knowledge of these modes can be relevant for further 
theoretical EO studies. We investigated the reasons for the 
cancellation of intra- and interband parts by inspecting the 
corresponding frequency dependent imaginary parts of the 

χ(2) (-2ω,ω,ω). First of all, one now sees that the opposite 
sign of intra- and interband parts not only occurs in the 
static value but occurs almost energy by energy. This is 
true over the entire energy range in BaTiO3 and over most 
of the range  (E >1 eV) for other ABO3. The sign of the 
inter and intraband part are difficult to understand a- priori   
because a variety of matrix element products comes into 
play and both ω and 2ω resonances occur in both the pure 
interband, and the interband contribution modified by 
intraband motion when these are further worked out into 
separate resonance terms. The spectra є2(ω) (Fig. 6) for the  
ABO3 compounds are rather similar. They  look like the 
superposition of the spectra of more or less four 
pronounced oscillators with resonance frequencies close to 
the M and Z line structures appearing in the 2ω and ω – 
terms of the imaginary parts. 

As an example of such a prediction the SHG 
coefficients of ABO3 compounds are given in Table 3. For 
incident light with a frequency small compared to the 
energy gap. The independent tensor components are listed 
for   ω=0. the comparison with recent experimental values 
and theoretical calculations[40] are also rather successful 
where available for the static SHG coefficients of the 
ABO3 compounds. 
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Fig. 1. Second-order susceptibility Im 2

333χ (-2ω,ω,ω) for BaTiO3 
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Fig. 2. Second-order susceptibility Im 2

333χ (-2ω,ω,ω) for tetragonal KNbO3. 
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Fig.  3. Second-order susceptibility Im 2

333χ (-2ω,ω,ω) for rhombohedral KNbO3. 
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Fig.  4. Second-order susceptibility Im 2

333χ (-2ω,ω,ω) for LiNbO3 
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Fig.  5.  Second-order susceptibility Im 2

333χ (-2ω,ω,ω) for LiTaO3 
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Fig. 6. The calculated imaginary part of  z –components of the dielectric function of ABO3. 

 
 

Table 3. Second-order nonlinear optical susceptibilities for some ABO3 crystals. 
       

Crystals Symmetry 
Class 

                  dil  x 10-7  (esu)                                 
 d15              d22                d31                 d33         Ref.      

BaTiO3            
 
 
KNbO3             
 
 
 
 
 
LiNbO3             
 
 
LiTaO3  
 

4mm     (cal.) 
             (exp) 
 
4mm     (cal.) 
             (cal.) 
 
3m        (cal.) 
             (cal.) 
  
3c         (cal.) 
             (exp.) 
 
3c         (cal.) 
             (exp.) 
 

 2.547      -           2.547        2.885 
 5.1          -           4.71          2.040     [40] 
  
 2.190      -          2.190         5.322 
   -            -         -0.299       -0.818     [40] 
 
   -          1.546     3.465        4.788 
   -          0.342     0.121        0.342     [40] 
    
   -          0.013     1.541        6.877 
   -          0.774    -1.464     -10.2         [41] 
     
   -          0.221     0.513       4.114  
   -          0.51      -0.321      -4.92.)     [41] 

 
 

5. Conclusion 
 
The linear and nonlinear optical properties for 

important group of oxygen-octahedron ferroelectrics 
ABO3 (LiNbO3, LiTaO3, KNbO3 and BaTiO3) have been 
calculated over a wide energy range. We studied some 
possible combination of A and B. This allowed us to study 
the trends in the second order optical response with 
chemical composition. The results for the zero-frequency 
limit of second harmonic generation in agreement with 
available experimental results. The calculated linear 
electrooptical coefficients for LiNbO3, LiTaO3,  KNbO3 
and  BaTiO3 are also show agreement with recent 
experimental data in the  energy region below band gap. 
For all the considered compounds the SHG coefficient χ(2) 
is of the order of ~10-7 esu. Our calculations of the SHG 
susceptibility shows that the intra-band and interband 
contributions are significantly changes with change B and 
A – ions.   
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